Sains Malaysiana 54(1)(2025): 77-92

http://doi.org/10.17576/jsm-2025-5401-07

 

Geokimia Pegmatit di Gunung Jerai dan Bukit Mor, Semenanjung Malaysia: Implikasi terhadap Pengelasan Pegmatit dan Potensi Pemineralan

(Geochemistry of Pegmatites in Gunung Jerai and Bukit Mor, Peninsular Malaysia: Implications for Pegmatite Classification and Mineralization Potential)

 

NUR SYAHIRAH ALIAS1,*, MOHD BASRIL ISWADI BASORI1 & NASIRUDIN YUSOFF2

 

1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Pejabat Dekan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 16 May 2024/Accepted: 11 September 2024

 

Abstrak

Pegmatit di sekitar Gunung Jerai, Kedah dan Bukit Mor, Johor, Semenanjung Malaysia merupakan dua kawasan utama yang telah diteroka dan dilombong bagi mendapatkan timah (Sn). Namun, kajian pengelasan pegmatit dan potensi sumber logam nadir dalam pegmatit di Semenanjung Malaysia masih terhad dan belum pernah diterbitkan. Penyelidikan ini mengkaji pengelasan pegmatit dan potensi pemineralan logam nadir di dalam pegmatit Jerai dan Bukit Mor berdasarkan pencirian geokimia. Analisis geokimia menggunakan peralatan Spektrometri Pancaran Plasma Gandingan Aruhan (ICP-ES) dan Spektrometri Jisim Plasma Gandingan Aruhan (ICP-MS) dijalankan untuk menentukan kandungan unsur major, surih dan nadir bumi (REE) di dalam pegmatit. Hasil analisis geokimia menunjukkan kandungan yang tinggi bagi SiO2, Al2O3 dan K2O+Na2O di dalam pegmatit di kedua-dua kawasan kajian dengan memperlihatkan komposisi granit iaitu berasal daripada protolit granit. Nilai indeks ketepuan aluminium (ASI) mengelaskan jenis magma yang membentuk pegmatit sebagai peralumina, manakala plot SiO2 melawan CaO+Na2O+K2O menunjukkan asalan magma bagi pembentukan pegmatit adalah granitoid jenis-S yang mengalami tahap fraksinasi tinggi. Seterusnya, pegmatit Jerai dan Bukit Mor boleh dikelaskan sebagai kumpulan LCT kerana dicirikan oleh kepekatan rendah Ca, Mg, Fe, Sr, Ba dan REE. Bagi potensi pemineralan, pegmatit Jerai dan Bukit Mor menunjukkan pengayaan bagi unsur logam nadir Rb, Li, Cs, Ga, Ta dan Sn dengan kelimpahan REE yang rendah hingga sederhana.

 

Kata kunci: Bukit Mor; geokimia; Gunung Jerai; pegmatit; pemineralan

 

Abstract

Pegmatites in Gunung Jerai, Kedah and Bukit Mor, Johor, Peninsular Malaysia are the two main areas that have been explored and mined for tin (Sn). However, studies of pegmatite classification and potential sources of rare metals in pegmatites of Peninsular Malaysia are still very limited and have never been published. This study investigates the classification of pegmatite and its implications for rare metal mineralization in the Jerai and Bukit Mor pegmatites based on geochemical characterization. Geochemical analysis using Inductively Coupled Plasma-Emission Spectroscopy (ICP-ES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) were conducted to determine major, trace, and REE contents in pegmatites. The geochemical results show high SiO2, Al2O3 and K2O+Na2O in pegmatite for both study areas, indicating a granite composition derived from granitic protoliths. The aluminium saturation index (ASI) classified the pegmatites as peraluminous, whereas the plot of SiO2 versus CaO+Na2O+K2O indicates the origin of the magma for the formation of the pegmatite is S-type granitoid that have experienced significant fractionation. Moreover, the Jerai and Bukit Mor pegmatites can be classified as LCT group pegmatites because they are characterized by low levels of Ca, Mg, Fe, Sr, Ba dan REE contents. In term of mineralization potential, the Jerai and Bukit Mor pegmatites are enriched with rare metal elements such as Rb, Li, Cs, Ga, Ta, and Sn, and exhibit low to moderate levels of REE.

 

Keywords: Bukit Mor; geochemistry; Gunung Jerai; pegmatite; mineralization

 

REFERENCES

Almashoor, S.S. 1974. Geology of Gunung Jerai, Kedah. Thesis. Kuala Lumpur: Universiti Kebangsaan Malaysia.

Askury, A.A. 1992. Empat pluton granitoid terasing di Johor: Satu tinjauan petrokimia dan genesis. Bulletin of the Geological Society of Malaysia 31: 85-106.

Beus, A.A. 1968. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits. San Francisco: W.H. Freeman. hlm. 401.

Bradford, E.F. 1972. The geology and mineral resources of the Gunong Jerai area, Kedah. Malaysia: Geological Survey Headquarters.

Černý, P. 1991. Rare-element granitic pegmatites. Part II: Regional to global enviroments and petrogenesis. Geoscience Canada 18(2): 68-81.

Černý, P. 1989. Exploration strategy and methods for pegmatite deposits of tantalum. In Lathanides, Tantalum and Niobium, disunting oleh Möller, P., Černý, P. & Saupe, F. Heidelberg: Springer-Verlag. hlm. 294-310.

Černý, P. & Ercit, T.S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist 43(6): 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005

Černý, P., London, D. & Novak, M. 2012. Granitic pegmatites as reflections of their sources. Elements 8(4): 289-294.

Chao, T.T. & Sanzolone, R.F. 1992. Decomposition techniques. Journal of Geochemical Exploration 44: 65-106.

Dill, H.G. 2018. Geology and chemistry of Variscan-type pegmatite systems (SE Germany) – With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geology Reviews 92: 205-239.

Dill, H.G. 2016. The CMS classification scheme (chemical composition-mineral assemblage-structural geology) – linking geology to mineralogy of pegmatitic and aplitic rocks. N. Jb. Miner. Abh. (J. Min. Geochem) 193(3): 231-263.

Dill, H.G. 2015. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geology Reviews 96: 417-561.

Jabatan Mineral & Geosains. 2014. https://jmg.gov.my

Jahns, R.H. & Burnham, C.W. 1969. Experimental studies of pegmatite genesis: A model for the derivation and crystallisation of granitic pegmatites. Economic Geology 64(8): 843-864.

Jamil, A., Ghani, A.A., Zaw, K., Othman, S. & Quek, L.X. 2016. Origin and tectonic implications of the ~200 Ma, collision-related Jerai pluton of the Western Granite Belt, Peninsular Malaysia. Journal of Asian Earth Sciences 127: 32-46.

Jarvis, K.E. 1990. A critical evaluation of two sample preparation techniques for low-level determination of some geologically incompatible elements by inductively coupled plasma-mass spectrometry. Chemical Geology 83: 89-103.

Khoo, T.T. 1977. Kejadian dan implikasi korok-korok pegmatit sinplutonik di granit Gunung Jerai, Kedah. Bulletin of the Geological Society of Malaysia 8: 117-120.

Linnen, R.L.,Van Lichtervelde, M. & Cerný, P. 2012. Granitic pegmatites as sources of strategic metals. Elements 8: 275-280.

London, D. 2008. Pegmatites. Canadian Mineralogist Special Publication 10: 347-368.

London, D. & Morgan, G.B. 2012. The pegmatite puzzle. Elements 8: 263-268.

London, D., Morgan, G.B., Paul, K.A. & Guttery, B.M. 2012. Internal evolution of a miarolitic pegmatite: The Little Three mine, Ramona, California (USA). The Canadian Mineralogist 50(4): 1025-1054.

Lv, Z.H., Zhang, H. & Tang, Y. 2021. Anatexis origin of rare metal/earth pegmatites: Evidence from the Permian pegmatites in the Chinese Altai. Lithos 380-381: 105865.

Lye, Y.H. 1984. Studies of pegmatitic cassiterites from the Gunung Jerai (Kedah), Bakri (Johore) and Kathu Valley (Phuket) regions. Bulletin of the Geological Society of Malaysia 17: 107-161.

Maniar, P.D. & Piccoli, P.M. 1989. Tectonic discrimination of granitoids. Geol. Soc. Ame. Bull. 101(5): 635-643.

Martin, R.F. & De Vito, C. 2005. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. The Canadian Mineralogist 43: 2027-2048.

Middlemost, E.A.K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews 37: 215-224.

Möller, P. & Morteani, G. 1987. Geochemical exploration guide for tantalum pegmatites. Economic Geology 82: 1888-1897.

Müller, A., Romer, R.L., Szuszkiewicz, A., Ilnicki, S. & Szełęg, E. 2016. Can pluton-related and pluton-unrelated granitic pegmatites be distinguished by their chemistry? Second Eugene E. Foord Pegmatite Symposium, July 15-19. Colorado School of Mines campus, Golden, Colorado. hlm. 67-69.

Pearce, J.A., Nigel, B.W.H. & Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25(4): 956-983.

Shand, S.J. 1943. The Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits with a Chapter on Meteorites. 2nd ed. New York: John Wiley and Sons.

Simmons, W.B. 2016. REE-Rich pegmatites from the South Platte and Trout Creek Pass Pegmatite Districts, Colorado: Contrasting geochemical profiles and tectonic regimes. Second Eugene E. Foord Pegmatite Symposium, July 15-19. Colorado School of Mines campus, Golden, Colorado.

Simmons, W.B. & Falster, A.U. 2016. Evidence for an anatectic origin of an LCT Type Pegmatite: Mt. Mica, Maine. Second Eugene E. Foord Pegmatite Symposium, July 15-19. Colorado School of Mines campus, Golden, Colorado.

Straurov, O.D., Stolyarov, I.S. & Isocheva, E.I. 1969. Geochemistry and origin of Verkh Iset Granitoid Massif in Central Ural. Geochemistry International 6: 1138-1148.

Sun, S.S. & McDonough, W.F. 1989. Chemical and isotopic systematics of Oceanic Basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins, disunting oleh Saunders, A.D. & Norry, M.J. Geological Society, Special Publications 42: 313-345.

Wan Fuad Wan Hassan & Mohamad Anuar Mohamad Yusof. 1985. Pegmatit dan kolumbit-tantalit primer di kawasan Bukit Mor, Bakri, Johor. Sains Malaysiana 14(1): 137-145.

Wan Fuad Wan Hassan. 2001. Slag Fragments in Heavy Mineral Concentrates from Bakri Area, Johor. Sains Malaysiana 30: 69-75.

 

*Corresponding author; email: p119695@siswa.ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next